## Shell structure and evolution through spectroscopy of <sup>11</sup>Be

M. Roosa, G. Christian, G. Rogachev, S. Ahn, E. Bennett, J. Bishop, S. Dede, C. Hunt, H. Jayatissa, E. Koshchiy, R. Malecek, S. Ota, C. Parker, D. Scriven, and S. Upadhyayula

As the canonical example of shell-breaking in a neutron-rich nucleus <sup>11</sup>Be has been a focus for *ab-initio* calculations [1]. The largest component of its ground state,  $v1s_{1/2}$ , is an inversion from the naive shell model's prediction and lacks a centrifugal barrier, producing <sup>11</sup>Be's famous one neutron halo. These studies will benefit from detailed spectroscopic information of <sup>11</sup>Be's low-lying states, some of which have been probed with neutron transfer studies [2]. We intend to provide a complementary measurement to neutron transfer studies with the proton pickup reaction (d, <sup>3</sup>He). Proton removal from <sup>12</sup>B will selectively populate p-wave states, making us particularly sensitive to the excited and unbound states of <sup>11</sup>Be.

Because the <sup>11</sup>Be system is well studied, this experiment will also help to establish the validity of using an Active Target Time Projection Chamber (AT-TPC) for transfer reaction studies [3]. We will extract differential cross sections from <sup>12</sup>B(d,<sup>3</sup>He)<sup>11</sup>Be in inverse kinematics to determine the spectroscopic factors of, and thus p-wave contributions to, low-lying states in <sup>11</sup>Be. Once the method is verified to work in the <sup>11</sup>Be case, we will extend it to the less-studied <sup>12</sup>Be system, where we will investigate occupancy of intruder shells in its low-lying states. The beam for this second experiment has already been developed – we expect  $1.5 \times 10^4$  pps of incident <sup>13</sup>B.

Data for the <sup>11</sup>Be study was taken during May of last year (2019) at the TAMU Cyclotron Institute using the K500 cyclotron and MARS [4]. Starting with a <sup>14</sup>C<sup>4+</sup> beam at 30 MeV/u, we used the 1 mm <sup>9</sup>Be target to produce  $\sim 10^5$ pps of <sup>12</sup>B at 259.5 MeV/u  $\pm$  4%. This beam was delivered to the TexAT experimental set-up where it was impinged on a 200 torr deuterated methane target. TexAT includes a MicroMeGAS pad plane which provides full momentum reconstruction in the gas target, accompanied by



**Fig. 1**. Average energy loss in the gas(Arb) is plotted against remaining energy(Arb) measured in the silicon detectors for a small subset (<1%) of available data.

a wall of Si-CsI telescopes positioned perpendicular to the beam axis with a plastic scintillator at the  $0^{\circ}$  position relative to the beam axis. The solid-state detectors are used to identify particles, and thus events, that are not contained within the active volume.

At present, the project is in the analysis process; with focus on establishing reliable particle identification (PID). We optimistically plan to be able to identify protons, deutrons, tritons and alpha particles in addition to the <sup>3</sup>He of interest. We plan to use a traditional  $E-\Delta E$  method (Fig. 1), in conjunction with a kinematics plot (Fig. 2) to separate the different particles.



E in Si v theta (xy hough angle)

Fig. 2. Energy from the silicon detectors plotted against reconstructed angle for a small subset (<1%) of available data. <sup>3</sup>He will only be found with  $\theta$ < 45°.

[1] A. Calci et al., Phys. Rev. Lett. 117, 242501 (2016).

- [2] K.T. Schmitt et al., Phys. Rev. Lett. 108, 192701 (2012).
- [3] E. Koshchiy et al., arXiv:1906.07845.
- [4] R.E. Tribble et al., Nucl. Instrum. Methods Phys. Res. A285, 441 (1989).